Теорема Ферма

Много лет назад я получил письмо из Ташкента от Валерия Муратова, судя по почерку, человека юношеского возраста, проживавшего тогда на улице Коммунистической в доме № 31. Парень был настроен решительно: "Сразу к делу. Сколько вы мне заплатите за доказательство теоремы Ферма? Меня устраивает не менее 500 рублей. В другое время я бы доказал вам бесплатно, но сейчас мне нужны деньги..."

Удивительный парадокс: мало кто знает, кто такой Ферма, когда он жил и что сделал. Еще меньше людей могут даже в самых общих словах описать его великую теорему. Но всем известно, что есть какая-то теорема Ферма, над доказательством которой математики всего мира бьются уже более 300 лет, а доказать не могут!

Людей честолюбивых много, и само сознание того, что есть нечто, чего другие сделать не могут, еще больше подстегивает их честолюбие. Поэтому в академии, научные институты и даже редакции газет всего мира приходили и приходят тысячи (!) доказательств Великой теоремы, — невиданный и никем никогда не побитый рекорд псевдонаучной самодеятельности. Существует даже термин: "ферматисты", т. е. люди, одержимые желанием доказать Великую теорему, которые совершенно измучили математиков-профессионалов требованиями оценить их труды. Известный немецкий математик Эдмунд Ландау даже заготовил стандартку, по которой и отвечал: "В вашем доказательстве теоремы Ферма ошибка на странице... ", а номер страницы проставляли его аспиранты. И вот летом 1994 года газеты всего мира сообщают нечто совершенно сенсационное: Великая теорема доказана!

Итак, кто такой Ферма, в чем суть проблемы и решена ли она действительно? Пьер Ферма родился в 1601 году в семье кожевника, человека состоятельного и уважаемого, — он занимал должность второго консула в родном городке Бомоне, — это что-то вроде помощника мэра. Пьер учился сначала у монахов-францисканцев, потом на юридическом факультете в Тулузе, где затем занимался адвокатурой. Однако круг интересов Ферма выходил далеко за рамки юриспруденции. Особенно занимала его классическая филология, известны его комментарии к текстам древних авторов. И вторая страсть — математика.

В XVII веке, как, впрочем, и долгие годы спустя, не существовало такой профессии: математик. Поэтому все великие математики того времени были математиками "по совместительству": Рене Декарт служил в армии, Франсуа Виет был юристом, Франческо Кавальери — монахом. Научных журналов тогда не было, и классик науки Пьер Ферма при жизни не опубликовал ни одной научной работы. Существовал достаточно узкий круг "любителей", которые решали разные для них интересные задачи и писали по этому поводу письма друг другу, иногда спорили (как Ферма с Декартом), но, в основном, оставались единомышленниками. Они и стали основателями новой математики, сеятелями гениальных зерен, из которых пошло в рост, набирая силу и ветвясь, могучее древо современных математических знаний.

Так вот, таким же "любителем" был и Ферма. В Тулузе, где он прожил 34 года, все знали его, прежде всего, как советника следственной палаты и опытнейшего юриста. В 30 лет он женился, имел трех сыновей и двух дочерей, иногда отлучался в служебные командировки и во время одной из них скоропостижно скончался в возрасте 63 лет. Все! Жизнь этого человека, современника "Трех мушкетеров", удивительна бедна событиями и лишена приключений. Приключения достались на долю его Великой теоремы. Не будем говорить обо всем математическом наследии Ферма, да и трудно рассказать о нем популярно. Поверьте на слово: наследие это велико и разнообразно. Утверждение, что Великая теорема — вершина его творчества, весьма спорно. Просто судьба Великой теоремы удивительно интересна, и огромный мир людей, непосвященных в таинства математики, всегда интересовала не сама теорема, а все, что вокруг нее...



Корни всей этой истории надо искать в античности, столь любимой Ферма. Примерно в III веке жил в Александрии греческий математик Диофант, — ученый своеобразно, нестандартно мыслящий и нестандартно мысли свои излагающий. Из 13 томов его "Арифметики" до нас дошло только 6. Как раз, когда Ферма исполнилось 20 лет, вышел новый перевод его сочинений. Ферма очень увлекался Диофантом, и эти сочинения были его настольной книгой. На ее полях Ферма и записал свою Великую теорему, которая в самом простом современном виде выглядит так: уравнение Xn + Yn = Zn не имеет решения в целых числах при п — больше 2. (При п = 2 решение очевидно: З2 + 42 = 52). Там же, на полях Диофантова тома, Ферма добавляет: "Я открыл это поистине чудесное доказательство, но эти поля для него слишком узки".

На первый взгляд, вещица простенькая, но когда другие математики начали доказывать эту "простенькую" теорему, ни у кого ничего не получалось лет сто. Наконец, великий Леонард Эйлер доказал ее для п = 4, потом через 20 (!) лет — для п = 3. И снова работа застопорилась на многие годы. Следующая победа принадлежит немцу Петеру Дирихле (1805—1859) и французу Андриену Лежандру (1752—1833), — они признали, что Ферма прав при п = 5. Потом француз Габриель Ламе (1795—1870) сделал то же для п = 7. Наконец, в середине прошлого века немец Эрнст Куммер (1810—1893) доказал Великую теорему для всех значений п меньше или равных 100. Причем доказал методами, которые не могли быть известны Ферма, чем еще более усилил флер таинственности вокруг Великой теоремы.

Таким образом, получалось, что доказывали теорему Ферма "по кусочкам", а "целиком" ни у кого не получалось. Новые попытки доказательств приводили лишь к количественному увеличению значений п. Все понимали, что, затратив бездну труда, можно доказать Великую теорему для сколь угодно большого числа п, но Ферма-то говорил о любом его значении больше 2! Вот в этой-то разнице между "сколько угодно большим" и "любым" и сосредотачивался весь смысл проблемы.

Однако надо отметить, что попытки доказать теорему Фермга не были просто некоей математической игрой, рсшсением сложного ребуса. В процессе этих доказательств открывались новые математичес кие горизонты, возникали и решались задачи, становившиеся новыми ветгвями математического древа. Великий немецкий математик Давид Гильберт (1862—1943) приводил Великую теорему, как пример того, "какое побуждающее влияние на науку может оказать специальная и на первыш взгляд малозначительная проблема". Тот же Куммер, работая над теоремой Ферма, сам доказал теоремы, которые легли в фундамент теории чисел, алгебры и теории функций. Так что доказательство Великой теорсемы — не спорт, а настоящая наука.

Время шло, и на помощь профеессиональным "фсрматнтстам" пришла электроника. Электронные мозги но)вых методов выдумать не могли, но зато брали скоростыю. Примерно к началу 80-х годов теорема Ферма с помощью ЭВМ была доказана для n меньше или равной 5500. Постепенно эта цифра выросла до 100 000, но все понимали, что подобное "накопление" — дело чисстой техники, ничего не дающее ни уму ни сердцу. Крепость Великой теоремы "в лоб" взять не смогли щ начали искать обходные маневрья.

В середине 80-х годов молодой немеадкий математик Г. Филытингс доказал так называемую "гипотезу Морделла", которая, кстати, тоже "не давалась в руки" никому из математиков 61 год. Возникла надежда, что теперь, так сказать, "атакой с фланга", может быть решена и теорема Ферма. Однако тогда ничего не получилось. В 1986 году немецкий математик Герхард Фрей в Эссеще предложил новый метод доказательства. Не берусь объяснить его строго, но не на маатематическом, а на общечеловеческом языке он звучит примерно так: если мы убедимся, что доказательство некой другой теоремы есть косвенное, неким образом трансформированное доказательство теоремы Ферма, то, следовательно, мы докажем Великую теорему. Через год американец Кеннет Рибет из Беркли показал, что Фрей прав и, действительно, можно одно доказательство свести к другому. По этому пути пошли многие математики в разных странах мира. У нас очень много для доказательства Великой теоремы сделал Виктор Александрович Колыванов. Трехсотлетние стены неприступной крепости зашатались. Математики поняли, что долго она не устоит.

Летом 1993 года в старинном Кембридже, в Институте математических наук имени Исаака Ньютона собрались 75 виднейших математиков мира, чтобы обсудить свои проблемы. Среди них был и американский профессор Эндрю Уайлс из Принстонскош университета, — крупный специалист в теории чисел. Все знали, что он уже много лет занимается Великой теоремой. Уайлс сделал три доклада и на последнем — 23 июня 1993 года — в самом конце, отвернувшись от доски, сказал с улыбкой:

— Пожалуй, я продолжать не буду...

Вначале наступила мертвая тишина, затем — обвал аплодисментов. Сидящие в зале были достаточно квалифицированы, чтобы понять: Великая теорема Ферма доказана! Во всяком случае, никто из присутствующих не обнаружил в приведенном доказательстве каких-либо погрешностей. Заместитель директора Ньютоновского института Питер Годдард заявил журналистам:

— Большинство экспертов не думали, что узнают разгадку до конца своей жизни. Это одно из крупнейших достижений математики нашего столетия...

Прошло несколько месяцев, никаких замечаний и опровержений не последовало. Правда, Уайлс доказательства своего не опубликовал, а лишь разослал, так называемые, припринты своей работы очень узкому кругу своих коллег, что, естественно, мешает математикам комментировать эту научную сенсацию, и я понимаю академика Людвига Дмитриевича Фаддеева, который сказал:

— Смогу утверждать, что сенсация произошла, когда увижу доказательство своими глазами.

Фаддеев считает, что вероятность победы Уайлса весьма велика.

— Мой отец, известный специалист в теории чисел, был, например, уверен, что теорема будет доказана, но не элементарными средствами, — добавил он.

Скептически отнесся к новости другой наш академик, — Виктор Павлович Маслов, который считает, что доказательство Великой теоремы вообще не является актуальной математической проблемой. По своим научным интересам Маслов — председатель совета по прикладной математике — далек от "ферматистов", и, когда он говорит о том, что полное решение Великой теоремы представляет лишь спортивный интерес, его понять можно. Однако смею заметить, что понятие актуальности в любой науке есть величина переменная. 90 лет назад Резерфорду, наверное, тоже говорили: "Ну, хорошо, ну теория радиоактивного распада... И что? Какой от нее прок?.."

Работа над доказательством Великой теоремы уже дала очень много математике, и можно надеется, что даст еще.

— То, что сделал Уайлс, продвинет математиков в другие области, — сказал Питер Годдард. — Скорее, это не закрывает одно из направлений мысли, а ставит новые вопросы, которые потребуют ответа...

Профессор МГУ Михаил Ильич Зеликин так объяснил мне сегодняшнюю ситуацию:

Никто не видит в работе Уайлса каких-то ошибок. Но чтобы работа эта стала научным фактом, необходимо, чтобы несколько авторитетных математиков независимо друг от друга повторили это доказательство и подтвердили его правильность. Это непременное условие осознания работы Уайлса математической общественностью...

Как много времени потребуется для этого?

Этот вопрос я задал одному из ведущих наших специалистов в области теории чисел, доктору физико-математических наук Алексею Николаевичу Паршину.

— У Эндрю Уайлса еще много времени впереди...

Дело в том, что 13 сентября 1907 года немецкий математик П. Вольфскель, который, в отличие от подавляющего большинства математиков, был человек богатый, завещал тому, кто в ближайшие 100 лет докажет Великую теорему, 100 тысяч марок. В начале века проценты с завещанной суммы шли в казну знаменитого Гетгангентского университета. На эти деньги приглашали ведущих математиков для чтения лекций, вели научную работу. В то время председателем комиссии по присуждению премии был уже упоминавшийся мною Давид Гильберт. Выплачивать премию ему очень не хотелось.

— К счастью, — говорил великий математик, — кажется, у нас нет математика, кроме меня, которому была бы под силу эта задача, я же никогда не решусь зарезать курицу, которая несет нам золотые яйца-

До срока — 2007 года, обозначенного Вольфскелем, осталось немного лет, и, мне кажется, над "курицей Гильберта" нависла серьезная опасность. Но не в премии, собственно, дело. Дело в пытливости мысли и человеческом упорстве. Триста с лишним лет бились, а все же доказали!

И еще. Для меня самое интересное во всей этой истории: как доказал свою Великую теорему сам Ферма? Ведь все сегодняшние математические ухищрения были ему неведомы. И доказал ли он ее вообще? Ведь есть версия, что доказал вроде бы, но сам нашел ошибку, а потому и доказательства другим математикам рассылать не стал, а зачеркнуть запись на полях Диофантова тома забыл. Поэтому, мне кажется, что доказательство Великой теоремы, очевидно, состоялось, но тайна теоремы Ферма осталась, и вряд ли мы когда-нибудь раскроем ее...

Может быть, Ферма и ошибся тогда, но он не ошибался, когда писал: "Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям..."